Cincinnati Children's Clinical Research Data Warehouse (i2b2)

23 September 2008

Keith Marsolo, PhD

Outline

- Background
 - CCHMC, informatics, RDW
- i2b2 implementation
 - Sources, staffing, hardware
- Extensions & future work
 - Ontologies, modules, bio-repository, CTSA

CCHMC

- Independent, full-service, not-for-profit pediatric academic medical center (affiliated with the University of Cincinnati College of Medicine)
- Major pediatric care provider for southern Ohio, northern Kentucky and eastern Indiana (serve patients from all 50 states, 48 countries)
- 500+ member pediatric clinical and research faculty
- Ranked in the top 5 pediatric institutions in the country
- Second among pediatric centers receiving NIH research grants

Bioinformatics @ CCHMC

- Basic research
 - Proteomics
 - NLP
 - Protein modeling
 - Data and systems integration
- Research IT
 - Hardware and software support
 - Software development
 - Storage and database hosting
 - High-performance computing

Data Management in a Combined Research & Clinical Environment

Transactional
Real-time operation
Focus on visit
Clinical care

- History and Physical
- Physician orders
- Progress notes

Transactional

Near real-time and archival

Focus on both patient

& operation of clinic

Effectiveness & outcomes

Integrate multiple data sources

Combine research & clinical

Focus on cohorts & patient

populations

Potential for de-identified queries

Data Warehouse: pre-i2b2

- Custom-built solution
- Primary drawbacks:
 - No coherent data model
 - Lack of data standards/governance
 - Poor data quality
- Resulted in a system with limited functionality

New Warehouse - Existing or Custom?

Custom Solution

- Pros
 - Tailored functionality
 - Control over design
- Cons
 - Expensive
 - Long development time
 - Proprietary data formats or system architecture

Existing Architecture

- Pros
 - Proven success
 - Potential for collaboration
- Cons
 - Missing features
 - Control of source and/or development

Our choice: i2b2

What is i2b2?

- i2b2 = Informatics for Integrating Biology & the Bedside
- National Center for Biomedical Computing (NCBC)
 - Funded by NIH to develop national computational infrastructure for biomedical computing
 - Centered at Partners HealthCare in Boston
- Open-source warehouse architecture
 - Based on Research Patient Data Registry developed at Massachusetts General Hospital (MGH)
 - Geared toward identification and analysis of patient cohorts.

Why i2b2?

- Designed for translational research
- Simple, scalable architecture
 - Supports multiple data types and sources
 - Capable of handling large amounts of data
- Potential for funding/collaboration
 - Share development with other institutions
 - Funding to develop additional functionality

Functionality of i2b2

- Designed around populations and cohorts
- Automated tools for cohort identification and hypothesis generation
- Creation of datamarts for later statistical analysis
- Develop other reporting and analysis tools based on user feedback.

Warehouse status

- 5 years of archive data (~500,000 patients)
- Access to Epic and legacy systems
- Content:
 - Demographics (age, race, gender, marital status)
 - Diagnoses (ICD-9)
 - Laboratory & pulmonary function tests
 - Medications (based on NDC)
 - Procedures (ICD-9 & CPT)

Future data sources

- Epic
 - Gold-standard for demographics
 - Vitals, problem list
 - Research variables
- DocSite (clinical research registries)
- Text-based reports
 - Discharge summaries
 - Pathology, Radiology and Cardiology reports
- Genetics, microarray

The trouble with free-text

- Natural language processing is hard
- Most effective at identifying concepts and keywords
 - Best with structured text and controlled vocabulary
 - What if concept is absent?
- Potential solution:
 - Parse all reports for a set of major concepts
 - Further processing after identification of cohort

Research & i2b2

- Two views:
 - Pull from i2b2 to augment research data
 - Push research data into i2b2
 - Allow others access to new information
 - More data for overlapping patients
- Other services:
 - Use i2b2 tools on project-specific datamart
 - Extracts and reports from Epic

Data-related challenges

- Age
 - Current?
 - At admission? Diagnosis?
 - De-identified: year only (i.e. 0 or 1)
- Overlapping & incomplete terminologies
 - ICD-9 and CPT for procedures
 - ICD-9 for diagnosis
- Medications
 - Ordered meds only
 - Not a complete history

Development @ CCHMC

- Web-based Workbench
 - Cohort identification through browser
 - Tabular breakdown of patient set
- Ontology Browser
 - Basic statistics for each query term
 - Histogram of diagnoses by age, laboratory results by reference range, etc.

Workbench

Workbench

Ontology Browser

Future Development @ CCHMC

- Cohort-based reminders and notifications
 - Adherence to protocol
 - Recruitment for trials
 - Interface with scheduling for near-time alerts
- Search for related terms using UMLS
- Customized ontologies
 - Pediatric-specific (joint efforts with Denver & Boston Children's)
 - Registry-based (i.e. DocSite)

Other Development

- CTSA-related
 - Federated queries
 - Multi-institution ontologies
 - Identity management
- Biorepository
 - Use cohort criteria to identify samples from discarded specimens
- i2b2
 - Query by value
 - Data import/export
 - File repository & Image annotation
- Potential integration with caBIG

Hardware

	CPU	Memory	Storage
Database - Oracle Cluster (2 node Standard Real Application Cluster)	1x Quad Core (each node)	16 GB (each node)	1 TB SAN storage (shared)
ETL - Oracle Server (Oracle Enterprise)	2x Quad Core	32 GB	1 TB SAN storage
i2b2 Middleware - Production (Linux, Apache/Tomcat, JBOSS)	2x Quad Core	16 GB	Local storage
i2b2 Middleware - Development (10x VMware virtual machines)	1-2x Single Core	512 MB - 8 GB (28 GB total)	Local storage
i2b2 Fileserver	1x Quad Core	8 GB	1 TB SAN storage

Staffing

Role	Effort
Project lead	1 FTE (faculty)
Database administrator	1 FTE
Data cleaning, data quality, user reports	2 FTE
Software developers	2 FTE
Customer interface	0.5 FTE

Participants

- Implementation Team (Biomedical Informatics BMI):
 Keith Marsolo Project Leader
 Parth Divekar, Pranay Shyam, Hai Ge, Adil Khan
- Information Services IS (Data Sources): Frank Menke, Jacquie Keebaugh, Lee Rich, Ron Robinson
- BMI (Hardware and Database Support): Michal Kouril, Mihir Mishra
- Special Thanks (Other Assistance):
 Jason Napora, Marianne James, John Hutton, Paul Steele, Andy Spooner

Questions?

- For further information:
 - E-mail: keith.marsolo@cchmc.org
 - Web: http://i2b2.cchmc.org

