Cincinnati Children’s Clinical Research Data Warehouse (i2b2)

23 September 2008

Keith Marsolo, PhD
Outline

• Background
 – CCHMC, informatics, RDW

• i2b2 implementation
 – Sources, staffing, hardware

• Extensions & future work
 – Ontologies, modules, bio-repository, CTSA
CCHMC

- Independent, full-service, not-for-profit pediatric academic medical center (affiliated with the University of Cincinnati College of Medicine)
- Major pediatric care provider for southern Ohio, northern Kentucky and eastern Indiana (serve patients from all 50 states, 48 countries)
- 500+ member pediatric clinical and research faculty
- Ranked in the top 5 pediatric institutions in the country
- Second among pediatric centers receiving NIH research grants
Bioinformatics @ CCHMC

• Basic research
 – Proteomics
 – NLP
 – Protein modeling
 – Data and systems integration

• Research IT
 – Hardware and software support
 – Software development
 – Storage and database hosting
 – High-performance computing
Data Management in a Combined Research & Clinical Environment

Clinical operations
- Clinical data repository (Epic/DocSite)
 - Transactional
 - Real-time operation
 - Focus on visit
 - Clinical care
 - History and Physical
 - Physician orders
 - Progress notes
- Operational data store (Clarity)
 - Transactional
 - Near real-time and archival
 - Focus on both patient & operation of clinic
 - Effectiveness & outcomes
- Research data warehouse (i2b2)
 - Integrate multiple data sources
 - Combine research & clinical
 - Focus on cohorts & patient populations
 - Potential for de-identified queries

Research laboratories
Data Warehouse: pre-i2b2

• Custom-built solution
• Primary drawbacks:
 • No coherent data model
 • Lack of data standards/governance
 • Poor data quality
• Resulted in a system with limited functionality
New Warehouse - Existing or Custom?

Custom Solution
• Pros
 – Tailored functionality
 – Control over design
• Cons
 – Expensive
 – Long development time
 – Proprietary data formats or system architecture

Existing Architecture
• Pros
 – Proven success
 – Potential for collaboration
• Cons
 – Missing features
 – Control of source and/or development

Our choice: i2b2
What is i2b2?

• i2b2 = Informatics for Integrating Biology & the Bedside

• National Center for Biomedical Computing (NCBC)
 – Funded by NIH to develop national computational infrastructure for biomedical computing
 – Centered at Partners HealthCare in Boston

• Open-source warehouse architecture
 – Based on Research Patient Data Registry developed at Massachusetts General Hospital (MGH)
 – Geared toward identification and analysis of patient cohorts.
Why i2b2?

• Designed for translational research
• Simple, scalable architecture
 – Supports multiple data types and sources
 – Capable of handling large amounts of data
• Potential for funding/collaboration
 – Share development with other institutions
 – Funding to develop additional functionality
Functionality of i2b2

- Designed around populations and cohorts
- Automated tools for cohort identification and hypothesis generation
- Creation of datamarts for later statistical analysis
- Develop other reporting and analysis tools based on user feedback.
Warehouse status

- 5 years of archive data (~500,000 patients)
- Access to Epic and legacy systems
- Content:
 - Demographics (age, race, gender, marital status)
 - Diagnoses (ICD-9)
 - Laboratory & pulmonary function tests
 - Medications (based on NDC)
 - Procedures (ICD-9 & CPT)
Future data sources

- Epic
 - Gold-standard for demographics
 - Vitals, problem list
 - Research variables
- DocSite (clinical research registries)
- Text-based reports
 - Discharge summaries
 - Pathology, Radiology and Cardiology reports
- Genetics, microarray
The trouble with free-text

• Natural language processing is hard
• Most effective at identifying concepts and keywords
 – Best with structured text and controlled vocabulary
 – What if concept is absent?
• Potential solution:
 – Parse all reports for a set of major concepts
 – Further processing after identification of cohort
Research & i2b2

• Two views:
 – Pull from i2b2 to augment research data
 – Push research data into i2b2
 • Allow others access to new information
 • More data for overlapping patients

• Other services:
 – Use i2b2 tools on project-specific datamart
 – Extracts and reports from Epic
Data-related challenges

• Age
 – Current?
 – At admission? Diagnosis?
 – De-identified: year only (i.e. 0 or 1)

• Overlapping & incomplete terminologies
 – ICD-9 and CPT for procedures
 – ICD-9 for diagnosis

• Medications
 – Ordered meds only
 – Not a complete history
Development @ CCHMC

• Web-based Workbench
 – Cohort identification through browser
 – Tabular breakdown of patient set

• Ontology Browser
 – Basic statistics for each query term
 – Histogram of diagnoses by age, laboratory results by reference range, etc.
Workbench
Ontology Browser

Welcome to the i2b2 Ontology Browser

- Ontology
 - Demographics
 - Diagnoses
 - Laboratory Tests
 - ACTH Stimul
 - Aldosterone
 - Cortisol Free Serum
 - Allergen Group
 - Amino Acids Level
 - Anaerobic
 - Analgesics
 - Anti Asthma
 - Anti Coagula
 - Antibiotics
 - Anticoagulants
 - Arg/Ins Tol
 - Arq/Clen St
 - RMT
 - Bid GasResp
 - Bid GasRespA
 - Blood Bank Group
 - Blood Cult
 - Body Fluid Group
 - CSF

Ontology - Labtests - LAB - ACTH Stimul - Aldosterone - 9000055^ALDOSTERON

9000055^ALDOSTERON

Reading Range: 1.5 - 12

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Gender</th>
<th># Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>20-29</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0-9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>20-29</td>
<td>1</td>
</tr>
</tbody>
</table>
Future Development @ CCHMC

• Cohort-based reminders and notifications
 – Adherence to protocol
 – Recruitment for trials
 – Interface with scheduling for near-time alerts
• Search for related terms using UMLS
• Customized ontologies
 – Pediatric-specific (joint efforts with Denver & Boston Children’s)
 – Registry-based (i.e. DocSite)
Other Development

• CTSA-related
 – Federated queries
 – Multi-institution ontologies
 – Identity management

• Biorepository
 – Use cohort criteria to identify samples from discarded specimens

• i2b2
 – Query by value
 – Data import/export
 – File repository & Image annotation

• Potential integration with caBIG
Hardware

<table>
<thead>
<tr>
<th>System</th>
<th>CPU</th>
<th>Memory</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database - Oracle Cluster (2 node Standard Real Application Cluster)</td>
<td>1x Quad Core (each node)</td>
<td>16 GB (each node)</td>
<td>1 TB SAN storage (shared)</td>
</tr>
<tr>
<td>ETL - Oracle Server (Oracle Enterprise)</td>
<td>2x Quad Core</td>
<td>32 GB</td>
<td>1 TB SAN storage</td>
</tr>
<tr>
<td>i2b2 Middleware - Production (Linux, Apache/Tomcat, JBOSS)</td>
<td>2x Quad Core</td>
<td>16 GB</td>
<td>Local storage</td>
</tr>
<tr>
<td>i2b2 Middleware - Development (10x VMware virtual machines)</td>
<td>1-2x Single Core</td>
<td>512 MB - 8 GB (28 GB total)</td>
<td>Local storage</td>
</tr>
<tr>
<td>i2b2 Fileserver</td>
<td>1x Quad Core</td>
<td>8 GB</td>
<td>1 TB SAN storage</td>
</tr>
<tr>
<td>Role</td>
<td>Effort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project lead</td>
<td>1 FTE (faculty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database administrator</td>
<td>1 FTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data cleaning, data quality, user reports</td>
<td>2 FTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software developers</td>
<td>2 FTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer interface</td>
<td>0.5 FTE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Participants

• **Implementation Team (Biomedical Informatics - BMI):**
 Keith Marsolo - Project Leader
 Parth Divekar, Pranay Shyam, Hai Ge, Adil Khan

• **Information Services - IS (Data Sources):**
 Frank Menke, Jacquie Keebaugh, Lee Rich, Ron Robinson

• **BMI (Hardware and Database Support):**
 Michal Kouril, Mihir Mishra

• **Special Thanks (Other Assistance):**
 Jason Napora, Marianne James, John Hutton, Paul Steele, Andy Spooner
Questions?

• For further information:
 – E-mail: keith.marsolo@cchmc.org
 – Web: http://i2b2.cchmc.org