Informatics for Integrating Biology at the Bedside

Ontology Functional Design Specification

Status Draft

Document Version:

Last Revision Date: 8/12/2008 Date Printed 1/5/2009

Synopsis: Functional design specification for the Ontology cell

Author:

Filename: Ontology_Design_Oracle

Workplace Design Specifications

Revision History

Author	Date	Number	Description
Vivian Gainer		1.0	Initial Version
Janice Donahoe	08/12/08	1.1	Modified the format

Table of Contents

1.	INTRODUCTION	4
2.	RELATIONSHIP OF 12B2 ONTOLOGY TO STAR SCHEMA	4
2.1	DATA STORAGE	4
2.2	ONTOLOGY TABLE	
2.3	DEFINITION OF FIELDS IN ONTOLOGY TABLE	. 5
2.3.1	c hlevel	
2.3.2	c fullname	
2.3.3	c_name	. 7
2.3.4	c synonym cd	
2.3.5	c visualattributes	7
2.3.6	c totalnum	. 8
2.3.7	c basecode	. 8
2.3.8	c_metadataxml	8
2.3.9	c_facttablecolumn	9
2.3.1	0 c_tablename	9
2.3.1	l $c_columnname$	9
2.3.1.	2 c_columndatatype	9
2.3.1.	$c_{operator}$. 9
2.3.1	· = · · · · · · · · · · · · · · · · · ·	
2.3.1.		
2.3.1	· · · F	
2.3.1	·r····=	
2.3.1	8 download_date	10
2.3.1	9 import_date	10
2.3.2		
2.4	DEFINITION OF TERMS	10
3.	SAMPLE ONTOLOGY QUERIES	10
3.1	QUERY SAMPLE FOR DIAGNOSES	
3.2	QUERY SAMPLE FOR PROBLEMS	
3.2 3.3	QUERY SAMPLE FOR LABS	
ر.ر	QUEKT SAWII DETOK LADS	1 1

1. INTRODUCTION

This document describes the functionality of the Ontology cell. It is to be used as a guideline and continuing reference as the developers write the code.

2. RELATIONSHIP OF I2B2 ONTOLOGY TO STAR SCHEMA

2.1 DATA STORAGE

The i2b2 data is stored in a relational database, usually either Oracle or SQL Server, and always in a star schema format. A star schema contains one fact and many dimension tables. The fact table contains the quantitative or factual data, while the dimension tables contain descriptors that further characterize the facts. Facts are defined by concept codes and the hierarchical structure of these codes together with their descriptive terms and some other information forms the i2b2 ontology (also called metadata).

I2b2 ontology data may consist of one or many tables. If there is one table, it will contain all the possible data types or categories. The other option is to have one table for each data type. Examples of data types are: diagnoses, procedures, demographics, lab tests, encounters (visits or observations), providers, health history, transfusion data, microbiology data and various types of genetics data. All metadata tables must have the same basic structure. This document will discuss the case of using one ontology table that holds all data types.

The structure of the metadata is integral to the visualization of concepts in the i2b2 workbench, as well as for querying the data. The next two sections are a representation of the i2b2 ontology table and a discussion of the fields therein.

2.2 ONTOLOGY TABLE

COLUMN NAME	DATA TYPE (ORACLE)	DATA TYPE (SQL)
C_HLEVEL	INT	INT
C_FULLNAME	VARCHAR2(900)	VARCHAR(900)
C_NAME	VARCHAR2(2000)	VARCHAR(2000)
C_SYNONYM_CD	CHAR(1)	CHAR(1)
C_VISUALATTRIBUTES	CHAR(3)	CHAR(3)
C_TOTALNUM	INT	INT

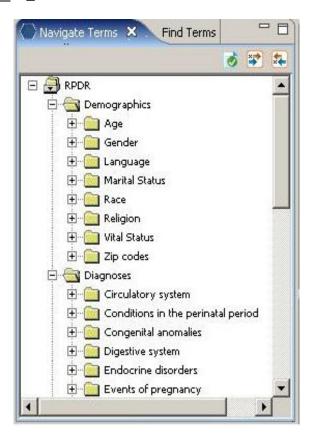
C_BASECODE	VARCHAR2(450)	VARCHAR(450)
C_METADATAXML	CLOB	TEXT
C_FACTTABLECOLUMN	VARCHAR2(50)	VARCHAR(50)
C_TABLENAME	VARCHAR2(50)	VARCHAR(50)
C_COLUMNNAME	VARCHAR2(50)	VARCHAR(50)
C_COLUMNDATATYPE	VARCHAR2(50)	VARCHAR(50)
C_OPERATOR	VARCHAR2(10)	VARCHAR(10)
C_DIMCODE	VARCHAR2(900)	VARCHAR(900)
C_COMMENT	CLOB	TEXT
C_TOOLTIP	VARCHAR2(900)	VARCHAR(900)
UPDATE_DATE	DATE	DATETIME
DOWNLOAD_DATE	DATE	DATETIME
IMPORT_DATE	DATE	DATETIME
SOURCESYSTEM_CD	VARCHAR2(50)	VARCHAR(50)
VALUETYPE_CD	VARCHAR2(50)	VARCHAR(50)

2.3 DEFINITION OF FIELDS IN ONTOLOGY TABLE

2.3.1 c_hlevel

c_hlevel is the hierarchical level of the term. The term at the highest level of a hierarchy has a value of 0, the next level has a value of 1 and so on.

<u>Important</u>: In the i2b2 ontology table, there is one row with *c_hlevel*=0, this row has the name of the table (RPDR) as the value of the *c_name* field.


The screen shots below show how the values in *c_hlevel* determine the way ontology data looks in the user interface.

- The name of the ontology table is RPDR, and this is *c_hlevel* 0 in the ontology table of the same name.
- The folders underneath RPDR all have *c hlevel* =1.
- When a user clicks on a plus (+) sign to open a folder, the next level to open has the value c_hlevel =2. Thus the field c_hlevel keeps terms grouped in hierarchical order.

Example 1: c_hlevels 0 and 1

Example 2: c_hlevels 0, 1 and 2

2.3.2 c_fullname

 $c_fullname$ is the hierarchical path that leads to the term. Below is an example of $c_fullname$ for the term 'Rheumatoid arthiritis'. It is shown on several lines but is actually one concatenated line in the $c_fullname$ field. Each '\' represents another hierarchical level.

```
\lambda{2}
\Diagnoses
\Musculoskeletal and connective tissue (710-739)
\Arthropathies (710-719)
\((714)\) Rheumatoid arthritis and other arthropathies
\((714-0)\) Rheumatoid arthritis
```

2.3.3 c_name

c_name is the descriptive text value for the term. It is what is displayed in the user interface.

2.3.4 c synonym cd

c_synonym_cd is a boolean field that indicates whether the field is a synonym for another term or not A 'Y' in this field denotes that the field is a synonym, while an 'N' means this is the original term. The default values is 'N', so all terms start out with 'N' and if synonyms are added they get the value 'Y'. . Two or more fields that are synonyms of each other will have the same c_basecode (defined below).

2.3.5 c visualattributes

 $c_visual attributes$ describes how the field looks in the user interface. It is a 3 character fields, with the following possible values

1st character:

F = Folder C = Container M = Multiple

L = Leaf

2nd character:

A = Active

I = Inactive

H = Hidden

3rd character:

O = Open

Folders and **containers** are the yellow rectangles with plus signs next to them that can be expanded to display other folders or leaves. The difference between a container and a folder is that a container may not be dragged into a panel in the workbench as a query item, while a folder can be a query item. Containers look different than folders in that they have a grey box around (containing) the folder. I2b2 primarily uses folder and no containers, which means that most terms can be used in queries.

Leaves are the lowest level of a hierarchy. They cannot be expanded any further and are depicted by a grey rectangle with a magnifying glass.

Multiples are terms where there is more than one term mapped to an item, but only one is displayed. An example is under Gender in the Demographics folder – the term 'Unknown' has a black dot in the magnifying glass indicating that there are at least two terms that are considered to be 'Unknown Gender' and both are mapped to this one.

The second character of *c_visualattributes* describes the status of the term. An **active** term is displayed normally. An **inactive** term is greyed out. It appears in the interface to let the user know it is there, but it cannot be used. A **hidden** term is just that – it is hidden from the user entirely.

The third character of *c_visualattributes* applies to containers and folders and indicates whether or not the item is open.

2.3.6 c_totalnum

c_totalnum is not used in i2b2.

2.3.7 c_basecode

c_basecode this is the term that describes the ontological concept. This may be an ICD9 code (for diagnoses), or an NDC code (for medications) or a LOINC code (for lab tests). Or it may be any number of other coding systems, even home-grown ones.

2.3.8 c_metadataxml

 $c_metadataxml$ is an optional field to store extra information about the concept in xml format. It is currently used to describe value metadata associated with a lab finding.

The next several fields, *c_facttablecolumn*, *c_tablename*, *c_columnname*, *c_operator*, *c_dimcode*, are used to help construct the SQL query that runs behind the scenes in the workbench.

2.3.9 c_facttablecolumn

c_facttablecolumn is the name of the column in the fact table (observation_fact) that holds the concept code.

2.3.10 c_tablename

c_tablename is the name of the lookup table that holds the concept code and concept path.

2.3.11 c columnname

c columnname is the name of the field that holds the concept path.

2.3.12 c_columndatatype

c_columndatatype is either 'T' for text or 'N' for numeric and describes the datatype of the concept.

2.3.13 c_operator

c_operator is the SQL operator used in the WHERE clause of the SQL query. It is usually either 'LIKE' or '='.

2.3.14 c dimcode

 $c_dimcode$ is the path that lives in the dimension table and maps to the concept path.

2.3.15 c_comment

c comment is an optional field to store miscellaneous comments

2.3.16 c_tooltip

c_tooltip is the tooltip that appears in the user interface for a given term. It is usually the concept path with spaces around the '\' for readability.

2.3.17 update_date

update_date is the date the data was updated.

2.3.18 download_date

download_date is the date the data was downloaded.

2.3.19 import_date

import_date is the date the data was imported.

2.3.20 sourcesystem_cd

sourcesystem_cd is a coded value for the source system from which the data was loaded or derived.

2.4 DEFINITION OF TERMS

3. SAMPLE ONTOLOGY QUERIES

3.1 QUERY SAMPLE FOR DIAGNOSES

ICD-9 code is known:

To lookup the c_basecode and c_fullname for ICD-9 diagnosis code 346.0, use this query:

```
Select c_basecode, c_fullname
From rpdr
Where c_basecode ='3460'
```

The *c_basecode* returned in the results can then be joined to the *concept_c* in the Observation_Fact table to find all patients diagnosed with ICD-9 code 346.0. Note that the *c_basecode* 3460 has no decimal point, these are removed.

ICD-9 code is unknown, but the diagnosis description is known:

To lookup the $c_basecode$ and $c_fullname$ for the diagnosis of migraines, use this query:

```
Select c_basecode, c_fullname
From rpdr
where c_fullname like '%diagnoses%migraine%'
```

The *c_basecodes* returned in the results could then be joined to the *concept_c* in the Observation Fact table to find all patients diagnosed with migraines.

3.2 QUERY SAMPLE FOR PROBLEMS

To find all the patients that were diagnosed with migraines, use this query:

```
Select distinct(patient_num)
From observation_fact
Where concept_cd in
(select concept_cd
from concept_dimension
where concept_path like '%Neurologic Disorders (320-389)\(346) Migraine\%')
```

To find the ages of all patients that were diagnosed with migraines, use this query:

```
Select concept_cd
From observation_fact
where concept_cd like 'DEM|Age%'
and patient_num in
(select patient_num from observation_fact
where concept_cd in
(select concept_cd
from concept_dimension
where concept_path like '%Neurologic Disorders (320-389)\(346) Migraine\%'))
```

3.3 QUERY SAMPLE FOR LABS

If we wanted to get all the ages for patients having a Cholesterol lab, we could run the following query:

```
Select concept_cd
From observation_fact
where concept_cd like 'DEM|Age%'
and patient_num in
(select patient_num from observation_fact
where concept_cd in
(select concept_cd
from concept_dimension
where concept_path like '%LAB\(LLB16) Chemistry\(LLB17) Lipid Tests\CHOL\%'))
```

Notice how the path of the concept is used to query all concept ids that fall into the Cholesterol group. If we only wanted to query for patients with Plasma Cholesterol only, we would use the same query with the following path joined against *c_fullname*:

'LAB\(LLB16) Chemistry\(LLB17) Lipid Tests\CHOL\MCSQ-PCHOL\%'

Or 'LAB\(LLB16) Chemistry\(LLB17) Lipid Tests\CHOL\MCPCHOL\%'